Effects of terminal group and chain length on temperature-responsive chromatography utilizing poly(N-isopropylacrylamide) synthesized via RAFT polymerization
نویسندگان
چکیده
Poly(N-isopropylacrylamide) with two chain lengths (MW: ca. 5000, and ca. 20 000 g mol ) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid as the chain transfer agent. The derivatization of terminal dodecyl groups to maleimide groups was performed through the reduction of terminal trithiocarbonate moieties. These polymers were grafted onto aminopropyl silica using an activated ester–amine coupling method. Five types of polymer modified silica beads were prepared, i.e., long chain length, short chain length, and mixed chain length functionalized with a dodecyl terminal group, and long chain length and short chain length with a maleimide terminal group. The surface properties of the modified polymer silica beads were evaluated by employing them as the stationary phase in HPLC setups and examining the temperature-dependent elution profiles of five steroids. The retention factor of steroids became smaller when the terminal dodecyl group was substituted with a maleimide group. A hydrophobic dodecyl moiety on the outermost surface strongly affected the retention of steroids, and the retention factor of steroids on short chains was larger than that on long chains below the lower critical solution temperature. These results indicate that the chain length and terminal functional group on the outermost surface of the polymer have a critical effect on the characteristics of polymer modified silica bead interfaces.
منابع مشابه
3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملA water-soluble supramolecular polymeric dual sensor for temperature and pH with an associated direct visible readout
We report a multi-stimuli responsive polymeric sensor consisting of a pseudorotaxane-like architecture fabricated from a 1,5-diaminonaphthalene end-functionalized poly(Nisopropyl)acrylamide (Napht-N-PNIPAM) and cyclobis(paraquat-p-phenylene) (CBPQT,4Cl). The coloured nature of the poly-pseudorotaxane provides a sensor for temperature and pH in water with an associated visible readout. To create...
متن کاملPreparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors.
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT ...
متن کاملFunctionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly(N-isopropylacrylamide) via click reactions.
Covalently functionalized multi-walled carbon nanotubes (MWNTs) were prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide) (N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization, and then the N₃-PNIPAM moiety was connected onto MWNTs by click...
متن کاملDual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کامل